The distal sequence element of the selenocysteine tRNA gene is a tissue-dependent enhancer essential for mouse embryogenesis.
نویسندگان
چکیده
Appropriate expression of the selenocysteine tRNA (tRNA(Sec)) gene is necessary for the production of an entire family of selenoprotein enzymes. This study investigates the consequence of disrupting an upstream enhancer region of the mouse tRNA(Sec) gene (Trsp) known as the distal sequence element (DSE) by use of a conditional repair gene targeting strategy, in which a 3.2-kb insertion was introduced into the promoter of the gene. In the absence of DSE activity, homozygous mice failed to develop in utero beyond embryonic day 7.5 and had severely decreased levels of selenoprotein transcript. Cre-mediated removal of the selection cassette recovered DSE regulation of Trsp, restoring wild-type levels of tRNA(Sec) expression and allowing the generation of viable rescued mice. Further analysis of targeted heterozygous adult mice revealed that the enhancer activity of the DSE is tissue dependent since, in contrast to liver, heart does not require the DSE for normal expression of Trsp. Similarly, in mouse cell lines we showed that the DSE functions as a cell-line-specific inducible element of tRNA(Sec). Together, our data demonstrate that the DSE is a tissue-dependent regulatory element of tRNA(Sec) expression and that its activity is vital for sufficient tRNA(Sec) production during mouse embryogenesis.
منابع مشابه
Identified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملOverproduction of selenocysteine tRNA in Chinese hamster ovary cells following transfection of the mouse tRNA[Ser]Sec gene.
Selenocysteine insertion during selenoprotein biosynthesis begins with the aminoacylation of selenocysteine tRNA[ser]sec with serine, the conversion of the serine moiety to selenocysteine, and the recognition of specific UGA codons within the mRNA. Selenocysteine tRNA[ser]sec exists as two major forms, differing by methylation of the ribose portion of the nucleotide at the wobble position of th...
متن کاملImmunolocalization of Galectin-3 in Mouse Testicular Tissue
Objective(s) Galectin-3 (Gal-3) is a member of the B-galactoside-binding lectins which is expressed in a variety of tissues and plays a role in diverse biological events, such as embryogenesis, adhesion, cellular proliferation, and apoptosis. In this study, the presence and distribution of galectin-3 (Gal-3) in the mouse testicular tissue was investigated. Materials and Methods Eight adult N...
متن کاملThe selenocysteine tRNA STAF-binding region is essential for adequate selenocysteine tRNA status, selenoprotein expression and early age survival of mice.
STAF [Sec (selenocysteine) tRNA gene transcription activating factor] is a transcription activating factor for a number of RNA Pol III- and RNA Pol II-dependent genes including the Trsp [Sec tRNA gene], which in turn controls the expression of all selenoproteins. Here, the role of STAF in regulating expression of Sec tRNA and selenoproteins was examined. We generated transgenic mice expressing ...
متن کاملConserved expression domains for genes upstream and within the HoxA and HoxD clusters suggests a long-range enhancer existed before cluster duplication.
The posterior HoxA and HoxD genes are essential in appendicular development. Studies have demonstrated that a "distal limb enhancer," remotely located upstream of the HoxD complex, is required to drive embryonic autopod expression of the posterior Hox genes as well as the two additional non-Hox genes in the region: Evx2 and Lnp. Our work demonstrates a similar mode of regulation for Hoxa13 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2005